convex sets with empty interiors can, in effect, be handled by the above results. The convexity requirement on X^0 is of course a restriction which cannot be dispensed with easily. (See however [Halkin 66, Canon et al. 66].) If we replace the convexity requirement on X^0 by the requirement that X^0 be open, a stronger necessary optimality condition than the above one can be obtained. In effect this will be an extension of the Fritz John stationary-point necessary optimality theorem 7.3.2 to the case of non-linear equalities. We shall give this result in the next section of this chapter.

3. Fritz John and Kuhn-Tucker stationary-point necessary optimality criteria: X^0 open

We derive in this section necessary optimality criteria of the Fritz John and Kuhn-Tucker types from the minimum principle of the previous section.

Fritz John stationary-point necessary optimality theorem [Mangasarian-Fromovitz 67a]

Let X^o be an open set in R^n . Let θ be a numerical function on X^o let g be an m-dimensional vector function on X^o , and let h be a k-dimensional vector function on X^o . Let \bar{x} be a (global) solution of the minimization problem

$$\theta(\bar{x}) = \min_{x \in X} \theta(x), \ \bar{x} \in X = \{x \mid x \in X^0, \ g(x) \le 0, \ h(x) = 0\}$$

or a local solution thereof, that is,

$$\theta(\bar{x}) = \min_{x \in X \cap B_{\delta}(\bar{x})} \theta(x) \qquad \bar{x} \in X \cap B_{\delta}(\bar{x})$$

where $B_i(\bar{x})$ is an open ball around \bar{x} with radius δ . Let θ and g be differentiable at \bar{x} , and let h have continuous first partial derivatives at \bar{x} . Then there exist $\bar{\tau}_0 \in R$, $\bar{\tau} \in R^m$, $\bar{s} \in R^k$ such that the following conditions are satisfied

$$\bar{r}_0 \nabla \theta(\bar{x}) + \bar{r} \nabla g(\bar{x}) + \bar{s} \nabla h(\bar{x}) = 0$$

$$\bar{r}g(\bar{x}) = 0$$

$$(\bar{r}_0,\bar{r}) \geq 0$$

$$(\bar{r}_0,\bar{r},\bar{s})\neq 0$$

PROOF Let \bar{z} be a global or local solution of the minimization problem.

In either case (since $X^{\mathfrak{o}}$ is open) there exists an open ball $B_{\mathfrak{o}}(\bar{x})$ around \bar{x} with radius ρ such that $B_{\mathfrak{o}}(\bar{x}) \subset B_{\mathfrak{o}}(\bar{x}) \subset X^{\mathfrak{o}}$, and

$$\theta(\hat{x}) = \min_{x \in X^*} \theta(x) \qquad \hat{x} \in X^* = \{x \mid x \in B_*(\hat{x}), g(x) \le 0, h(x) = 0\}$$

Since $R_{\bullet}(\bar{z})$ is a convex set with a nonempty interior, we have by the minimum principle 11.2.3 that there exist $\hat{r}_{\bullet} \in R$, $\hat{r} \in R^{n}$, $\hat{z} \in R^{k}$ such that

$$\begin{split} [\bar{r}_0\nabla\theta(\bar{x}) + \bar{r}\nabla g(\bar{x}) + \bar{s}\nabla h(\bar{x})](x - \bar{x}) & \geq 0 \qquad \text{for all } x \in B_s(\bar{x}) \\ \bar{r}g(\bar{x}) & = 0 \\ (\bar{r}_0, \bar{r}) & \geq 0 \\ (\bar{r}_0, \bar{r}, \bar{s}) & \neq 0 \end{split}$$

Since for some small positive !

$$\bar{x} - \S[\bar{r}_0 \nabla \theta(\bar{x}) + \bar{r} \nabla g(\bar{x}) + \bar{s} \nabla h(\bar{x})] \in B_s(\bar{x})$$

we have from the first inequality above that

$$\vec{r}_0 \nabla \theta(\hat{x}) + \vec{r} \nabla g(\hat{x}) + \vec{s} \nabla h(\hat{x}) = 0$$

To derive Kuhn-Tucker conditions from the above, we need to impose constraint qualifications on the problem.

The Kuhn-Tucker constraint qualification (see 7.3.3)

Let X^o be an open set in R^o , let g and h be m-dimensional and k-dimensional vector functions on X^o , and let

$$X = \{x \mid x \in X^0, g(x) \leq 0, h(x) = 0\}$$

g and h are said to satisfy the Kuhn-Tucker constraint qualification at $ar x \in X$ if g and h are differentiable at ar x and

There exists an
$$n$$
-dimensional vector function e on the interval [0,1] such that
$$a. \ e(0) = \bar{x}$$

$$b. \ e(\tau) \in X \text{ for } 0 \le \tau \le 1$$

$$c. \ e \text{ is differentiable at } \tau = 0 \text{ and } \frac{de(0)}{d\tau} = \lambda y$$
for some $\lambda > 0$

where

$$I = \{i \mid g, \bar{z}\} = 0\}$$

171

OCCOPANA

Let Xo be an open set in Ro, let g and h be m-dimensional and k-dimensional vector functions on Xo, and let

$$X = \{x \mid x \in \dot{X}^0, g(x) \leq 0, h(x) = 0\}$$

g and h are said to satisfy the weak Arrow-Hurwicz-Uzawa constraint qualification at $\bar{x} \in X$ if g and h are differentiable at \bar{x} , h is both pseudoconvex and pseudoconcave at \bar{x} , and

$$\begin{pmatrix}
\nabla g_{Q}(\vec{x})z > 0 \\
\nabla g_{P}(\vec{x})z \ge 0 \\
\nabla h(\vec{x})z = 0
\end{pmatrix}$$
 has a solution $z \in R^{n}$

where

 $P = \{i \mid g_i(\bar{x}) = 0, \text{ and } g_i \text{ is pseudoconcave at } \bar{x}\}$

$$Q = \{i \mid g_i(\bar{z}) = 0, \text{ and } g_i \text{ is not pseudoconcave at } \bar{z}\}$$

The weak reverse convex constraint qualification (sec 10.2.4)

Let X^{\bullet} be an open set in R^{\bullet} , let g and h be m-dimensional and k-dimensional vector functions on Xo, and let

$$X = \{x \mid x \in X^0, g(x) \leq 0, h(x) = 0\}$$

g and h are said to satisfy the weak reverse constraint qualification at $\bar{x} \in X$ if g and h are differentiable at \bar{x} , and if for each

$$i \in I = \{i \mid g_i(\bar{x}) = 0\}$$

either g_i is pseudoconcave at \bar{x} or linear on R^n , and h is both pseudoconvex and pseudoconcave at \bar{x} .

The modified Arrow-Hurwicz-Uzawa constraint qualification [Mangasarian-Fromovitz 67a]

Let X^{o} be an open set in R^{n} , let g and h be m-dimensional and k-dimensional vector functions on Xo, and let

$$X = \{x \mid x \in X^0, g(x) \leq 0, h(x) = 0\}$$

g and h are said to satisfy the modified Arrow-Hurwicz-Uzawa constraint qualification at $\tilde{x} \in X$ if g is differentiable at \tilde{x} , h is continuously differentiable at \mathbf{f} , $\nabla h_i(\mathbf{f})$, $i=1,\ldots,k$, are linearly independent, and

$$\begin{pmatrix}
\nabla g_I(\hat{x})z > 0 \\
\nabla h(\hat{x})z = 0
\end{pmatrix}$$
has a solution $z \in \mathbb{R}^n$

$$I=\{i\mid g_i(\hat{x})=0\}$$

Kuhn-Tucker stationary-point necessary optimality theorem

Let Xo be an open set in Ro, and let 0, g, and h be respectively a numerical function, an m-dimensional vector function, and a k-dimensional vector function, all defined on X°. Let \(\tilde{x}\) be a (global) solution of the minimization

problem
$$\theta(\bar{x}) = \min_{x \in X} \theta(x) \qquad \bar{x} \in X = |x| | x \in X^0, g(x) \le 0, h(x) = 0|$$

or a local solution thereof, that is,

$$\theta(\hat{x}) = \min_{x \in X \cap B_{x}(\hat{x})} \theta(x) \qquad \hat{x} \in X \cap B_{x}(\hat{x})$$

where Bi(t) is some open ball around I with radius 8. Let 0, g, and h he differentiable at 1, and let g and h satisfy

- (i) the Kulin-Tucker constraint qualification 2 at x, or
- (ii) the weak Arrow-Hurwicz-Uzawa constraint qualification 3 at 1, or
- the weak reverse convex constraint qualification 4 at \$\tilde{x}\$, or
- (iv) the modified Arrow-Hurwicz-Uzawa constraint qualification o at z.

Then there exist $ar{u} \in R^{m}$ and $a\ ar{v} \in R^{k}$ such that

$$\nabla \theta(\bar{x}) + \bar{u} \nabla g(\bar{x}) + \bar{v} \nabla h(\bar{x}) = 0$$

 $g(\bar{x}) \leq 0$

 $h(\hat{x}) = 0$

 $\bar{u}g(\bar{x}) = 0$

 $\bar{u} \ge 0$

PROOF (i)-(ii)-(iii) These parts of the theorem follow from Theorem 10.2.7, parts (i), (ii), and (iii), by replacing h(x) = 0 in the above theorem by $h(x) \leq 0$ and $-h(x) \leq 0$.

178

.11.6

(iv) All we have to show here is that $\bar{r}_0 > 0$ in the Fritz John theorem 1 above, for then we have that $\bar{x}, \bar{u} = \bar{r}/\bar{r}_0$ and $\bar{v} = \bar{s}/\bar{r}_0$ satisfy the Kuhn-Tucker conditions above. We assume now that $\bar{r}_0 = 0$ and exhibit a contradiction.

If $I = \{i \mid g_i(\bar{x}) = 0\}$ is empty, that is, there are no active constraints, then $\bar{r} = 0$ (since $\bar{r}g(\bar{x}) = 0$, $\bar{r} \ge 0$ and $g(\bar{x}) \le 0$). Hence by Theorem 1

$$\bar{s}\nabla h(\bar{x}) = 0$$
 $\bar{s} \neq 0$

which contradicts the assumption of 5 that $\nabla h_i(\bar{x})$, $i=1,\ldots,k$, are linearly independent. (If there are no equality constraints h(x)=0, then $(\bar{r}_0,\bar{r})=0$ contradicts the condition $(\bar{r}_0,\bar{r})\neq 0$ of Theorem 1, since there is no \bar{s} .)

If I is not empty, then by Theorem 1 we have that

$$\bar{r}_I \nabla g_I(\bar{x}) + \bar{s} \nabla h(\bar{x}) = 0$$

$$\hat{r}_I \ge 0$$

$$(\bar{r}_I, \bar{s}) \ne 0$$

If $\bar{r}_I = 0$, then $\bar{s} \neq 0$, and we have a contradiction to the assumption of δ that $\nabla h_i(\bar{x})$, $i = 1, \ldots, k$, are linearly independent (if there is no \bar{s} , then $\bar{r}_I = 0$ implies $(\bar{r}_0, \bar{r}) = 0$, which contradicts the condition $(\bar{r}_0, \bar{r}) \neq 0$ of Theorem 1). If $\bar{r}_I \neq 0$, then $\bar{r}_I \geq 0$. But by 5 there exists a z such that

$$\nabla g_I(\bar{x})z > 0$$
 and $\nabla h(\bar{x})z = 0$

Hence

$$\bar{r}_I \nabla g_I(\bar{x}) z + \bar{s} \nabla h(\bar{x}) z > 0$$

which contradicts the equality above that

$$\bar{r}_1 \nabla g_1(\bar{x}) + \bar{s} \nabla h(\bar{x}) = 0$$